
074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 13

REENGINEERING IS THE most widely
used approach to support evolutionary
maintenance. It examines and alters a
legacy system to reconstitute it in a new
form.1

Reengingeering Stages
Reengineering consists of three stages:
reverse engineering, restructuring, and
forward engineering.

Reverse Engineering
Maintainers use reverse engineering to
obtain one or more abstract representa-
tions of the legacy systems—for exam-
ple, a set of class diagrams representing

the system design—that identify the
system’s components and their inter-
relationships at a higher abstraction
level.2 Reverse engineering techniques

fi t into two categories: static and dy-
namic analysis.3

Static analysis syntactically analyzes
the source code’s structure to highlight
weaknesses, complexities, and opportu-
nities for improvement. Maintainers can
also apply static analysis to database
scripts to determine the database design.

Dynamic analysis examines leg-
acy systems at runtime. It instruments
source code to enable the code to regis-
ter traces during execution. It then an-
alyzes those traces to retrieve abstract
representations of the legacy system. It
can retrieve particular information—
for example, performance data and
values of data variables—that’s known
only during system execution.

Restructuring
Restructuring transforms the abstract
representations that reverse engineer-
ing provides into other representations
at the same abstraction level. It aims to
improve certain properties such as the
representation’s structure or quality as
well as to introduce new business re-
quirements. For example, maintainers
can use restructuring to apply design
patterns to maintain the system design.
Restructuring techniques include refac-
toring to restructure source code or a
database schemas by preserving its ex-
ternal behavior, clone detection to de-
tect duplicate fragments of source code,
and dead-code detection for removing
inoperative code.

Forward Engineering
Maintainers use the restructured repre-
sentations of legacy systems to generate
physical implementations of the target
system at a low abstraction level. For-
ward engineering involves using gener-
ative and transformational techniques
to automatically obtain source code ac-
cording to new platforms or program-
ming languages.

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

Reengineering
Technologies
Ricardo Pérez-Castillo, Ignacio García-Rodriguez de Guzmán,
Mario Piattini, and Christof Ebert

Software systems must continually evolve to meet ever-
changing needs. However, such systems often become legacy
systems as a consequence of uncontrolled maintenance
combined with obsolete technology. To control maintenance
costs and preserve complex embedded business rules,
companies must evolve their legacy systems. This article
introduces technologies for software reengineering. I look
forward to hearing from both readers and prospective
authors about this column and the technologies you
want to know more about. —Christof Ebert

SOFTWARE
TECHNOLOGY

Reengineering consists of three stages:
reverse engineering, restructuring,
and forward engineering.

14	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

SOFTWARE TECHNOLOGY

Model-Driven Reengineering
Software engineers have applied model-
driven development (MDD) technolo-
gies to software reengineering to deal
with standardization and automa-
tion challenges. In 2007, the Object
Management Group (OMG) launched
the Architecture-Driven Modernization
(ADM) initiative to standardize model-
driven reengineering. ADM advocates

following MDD principles on reengi-
neering projects, such as treating all the
artifacts involved as models and provid-
ing model transformation among them.
These let maintainers carry out more
automatic and reusable reengineer-
ing projects because models are based
on standard metamodels and model
transformations are implemented using
purpose-specific languages.

Maintainers adapt reengineering
techniques to manage models using
model refactoring rather than tradi-
tional refactoring. They also use static
and dynamic analyses to generate mod-
els with the information retrieved ac-
cording to metamodels, and so on.

The ADM initiative has also created
the Knowledge Discovery Metamodel
(KDM), which has been recently adopted

TA
B

L
E

 1 Software reengineering tools.

To
ol

Ty
pe

Re
en

gi
-

ne
er

in
g

st
ag

es

su
pp

or
te

d

Te
ch

-
ni

qu
es

su

pp
or

te
d

M
od

el
-

dr
iv

en

In
pu

t
ar

tif
ac

ts

Ou
tp

ut

ar
tif

ac
ts

Us
ef

ul
ne

ss

fo
r m

ai
n-

ta
in

er
s

Pr
ic

in
g

(U
S$

)

Amelio Commercial All Static
analysis,
refactoring,
and auto-
matic code
generation

No Source code
and relational
databases

Data-flow
and process-
flow graphs,
along with
source code

Reliable
planning,
calculation,
and accom-
plishment of
modernization
projects

$0.42–
$2.10
per LOC,
depending
on system
complexity

Avalanche Academic Reverse
engineering

Dynamic
analysis

No Binary code Control and
data-flow
graphs and
metrics

Program com-
prehension
and detection
of bugs and
vulnerabilities

Free
(open
source
code)

Blue Age Commercial All Static
analysis,
refactoring,
and auto-
matic code
generation

Yes Source code
(various
languages)

System
design
diagrams and
source code
(different
languages)

Migrates and
transforms
applications

n/a

CloneDR Commercial Reverse
engineering
and restruc-
turing

Static
analysis
and clone
detection

No Source code
(various
languages)

Removing
clone code

Maintainability
improvement
by removing
duplicate code

$0.005–
$0.03
per LOC

DB-MAIN Academic All Static
analysis,
refactoring,
and code
generation

No Relational
and non-
relational
databases
and database
scripts

Database
design,
database
scripts, and
source code

Migration,
integration,
and federation
of legacy data-
bases; impact
analysis; and
data wrapper
design and
generation

Free

Microfocus
Modern
ization
Workbench

Commercial Reverse
engineering
and restruc-
turing

Static
analysis

No Application
portfolio

Business
knowledge

Locates where
changes
should be
made to
an applica-
tion without
disrupting
stability

n/a

	 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE � 15

SOFTWARE TECHNOLOGY

as the ISO/IEC 19506 standard.4 KDM
is the cornerstone of the ADM initia-
tive and provides a common format for
the interchange of information between
reengineering tools. KDM facilitates the
representation of information retrieved
by reverse engineering from different
legacy software artifacts and system
viewpoints (for example, source code,
database, and user interfaces). KDM
is comparable to the UML standard.
Whereas UML is used to generate new
code in a top-down manner, a reengi-
neering process involving KDM starts
from the existing code and builds higher-
level models in a bottom-up manner.

KDM-based model-driven reengi-
neering alters the construction and use
of reengineering tools. Traditional reen-
gineering tools have been built as silos
from which each tool recovers and ana-
lyzes a particular proprietary content
in a single silo—for example, one tool
would be used for the source code (such
as Cobol), and another would be used
for the legacy database (such as CICS/
DB2; Customer Information Control
System/Database 2). So, two proprietary
and independent models exist at the end
of the process—a Java code model and
a DB2 database schema model—which
should also be analyzed independently.

ADM encourages maintainers to
build reengineering tools in a KDM
ecosystem. This means that reengineer-
ing tools recover different information
related to different legacy software ar-
tifacts and that a KDM repository is
progressively populated with the in-
formation retrieved. Software analysis
tools can be homogeneously plugged
into the KDM common repository to
generate more valuable information in
a standard way.

Software Reengineering Tools
Table 1 compares 13 tools that support
reverse engineering and reengineering.

TA
B

L
E

 1
 (

C
O

N
T
'D

) Software reengineering tools.

To
ol

Ty
pe

Re
en

gi
ne

er
-

in
g

st
ag

es

su
pp

or
te

d

Te
ch

ni
qu

es

su
pp

or
te

d

M
od

el
-

dr
iv

en

In
pu

t
ar

tif
ac

ts

Ou
tp

ut

ar
tif

ac
ts

Us
ef

ul
ne

ss

fo
r m

ai
n-

ta
in

er
s

Pr
ic

in
g

(U
S$

)

MoDisco Academic Reverse
engineering
and restruc-
turing

Static
analysis and
refactoring

Yes Source code,
databases
and other
artifacts

Models
representing
artifacts

A generic and
extensible
metamodel-
driven
approach to
model dis-
covery

Free
(Eclipse
plug-in)

Moose Academic Reverse
engineering
and restruc-
turing

Static
analysis,
refactoring,
and clone
detection

Yes Source code
and user
interfaces

System
design
diagrams

Allows
understand-
ing of legacy
systems and
evaluating
their maintain-
ability

Free
(open
source
code)

Obeo Agility Commercial All Static
analysis,
refactoring,
and auto-
matic code
generation

Yes Source code
(various
languages)

System
design dia-
grams and
source code
(different
languages)

Migrates and
transforms
applications

n/a

Resource
Miner

Commercial Reverse
engineering
and restruc-
turing

Static
analysis and
refactoring

No Source code
(various
languages)

Code inven-
tory, require-
ments, and
quality audits

Software asset
management
and application
measure

$999 single
license
per year

Visual
Paradigm

An integrated
development
environment
supporting
reengineering

Reverse
engineering
and forward
engineering

Static
analysis and
automatic
code
generation

No but based
on the Uni-
fied Modeling
Language
(UML)

Java, C++
java code or
UML class
diagrams

UML class
diagrams,
Java, or C++
code

Round-trip
between Java
or C++ and
system design
based on UML
class diagrams

$699 single
license and
$67,000
corporate
license (free
community
edition)

16 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

SOFTWARE TECHNOLOGY

REENGINERING WITH MODISCO
MoDisco (http://eclipse.org/MoDisco) supports model-driven
reengineering and focuses on reverse engineering and restruc-
turing. MoDisco facilitates modernization of existing systems by
providing

• metamodels to describe existing systems—for example,
the Knowledge Discovery Metamodel (KDM) or Unified
Modeling Language (UML),

• discoverers to automatically create models of existing sys-
tems—for example, from Java, C, or PHP projects, and

• generic tools to
understand and
transform complex
models created
from the existing
systems—for
example, graphical
UML editors.

Figure A shows a re-
engineering project with
MoDisco aimed at evolving
IceScrum, a tool that sup-
ports the Scrum methodol-
ogy. First, you select the
source Eclipse project, or
a piece of a project, that
represents the existing
system. IceScrum is a Java
project, although MoDisco
supports other technolo-
gies. Second, you ana-
lyze the source code and
generate a KDM model,
which is int egrated into a
KDM repository. Third, you

choose KDM models and transform them into UML models rep-
resenting the existing system. Fourth, you can apply refactoring
patterns and introduce new functionalities to the UML models,
at a higher abstraction level. You can make such modifi cations
using the available MoDisco editors or other Eclipse plug-in
tools. Finally, because MoDisco is an Eclipse plug-in, you can
easily extend or integrate it with other tools—for example, code
generators such as MOFScript, which can automatically gener-
ate source code for the same platform or a different target pro-
gramming language.

 FIGURE A. Reengineering IceScrum with MoDisco. The interface shows source code, Knowledge

Discovery Metamodel (KDM) representation, and Uni� ed Modeling Language (UML) models for

IceScrum.

Several support both traditional and
model-driven reengineering.

Some commercial tools—for ex-
ample, Microfocus Modernization
Workbench, Amelio, BlueAge, and
ObeoAgilit—focus on most of the re-
engineering stages available for I/O
platforms and programming lan-

guages. Their costs can vary depending
on the legacy system’s platform, size,
and other features. Others focus on
one technique. For example, Resource
Miner supports static analysis to obtain
a code inventory and metrics, whereas
CloneDR focuses on detecting and re-
moving duplicate code.

Commercial integrated development
environments, such as Visual Para-
digm, are progressively incorporating
more reverse-engineering techniques,
such as automatic code generation from
UML models (related to forward engi-
neering) and reverse engineering from
code to system design.

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 17

SOFTWARE TECHNOLOGY

Reengineering research has also
generated open source tools—for ex-
ample, MOOSE, MoDisco, and Ava-
lanche—that support ad hoc techniques
proposed from academia. Some, such
as MoDisco (see the sidebar), are also
available as Eclipse plug-ins and can
thus be combined with other related
plug-ins.

The latest releases of some of the
tools, such as Blue Age, Obeo Agility,
MoDisco and MOOSE, already follow
the model-driven approach.

H ere are some hints for success-
ful reengineering:

• Formalize the methodology, and
use standards to carry out repeat-
able reengineering projects.

• Use well-known reengineering tech-
niques and tools.

• Treat reengineering as a change
management project with a con-
crete budget, skilled resources, and
management support.

• Align the reengineering proj-
ect with the company's strategic
direction.

• Use techniques for decision support
(for example, portfolio analysis) to
focus on where reengineering has
the biggest yield.

• Use good software engineering pro-
cesses, such as for confi guration
control, documentation, and auto-
matic verifi cation.

The software industry has widely
used reengineering. However, approxi-
mately 50 percent of reengineering
projects fail because they produce un-
satisfactory results or cost overruns.5
This is owing to traditional reengineer-
ing, which is usually related to ad hoc
solutions, and has two main limita-
tions: standardization and automation.
Standardizing and automating reengi-
neering projects is necessary to better

reuse legacy code and ensure that reen-
gineered code can be further improved
over time—independently of the chosen
tools.

References
 1. E.J. Chikofsky and J.H. Cross, “Reverse Engi-

neering and Design Recovery: A Taxonomy,”
IEEE Software, vol. 7, no. 1, 1990, pp. 13–17.

 2. G. Canfora, M.D. Penta, and L. Cerulo,
“Achievements and Challenges in Software
Reverse Engineering,” Comm. ACM, vol. 54,
no. 4, 2011, pp. 142–151.

 3. C. Ebert and R. Dumke, Software Measure-
ment: Establish—Extract—Evaluate—Ex-
ecute, Springer, 2007.

 4. ISO/IEC DIS 19506, Information Technol-
ogy—Architecture-Driven Modernization—
Knowledge Discovery Meta-model (KDM),
v1.1 (Architecture-Driven Modernization),
ISO/IEC, 2009, p. 302; www.iso.org/iso/
iso_catalogue/catalogue_ics/catalogue_
detail_ics.htm?ics1=35&ics2=080&ics3=&
csnumber=32625.

 5. H.M. Sneed, “Estimating the Costs of a
Reengineering Project,” Proc. 12th Working
Conf. Reverse Eng., IEEE CS Press, 2005, pp.
111–119.

RICARDO PÉREZ-CASTILLO is a PhD student at
the University of Castilla-La Mancha. Contact him at
ricardo.pdelcastillo@uclm.es.

IGNACIO GARCÍA-RODRIGUEZ DE GUZMÁN is
an assistant professor at the University of Castilla-La
Mancha. Contact him at ignacio.grodriguez@uclm.es.

MARIO PIATTINI is a full professor at the Univer-
sity of Castilla-La Mancha. Contact him at mario.
piattini@uclm.es.

CHRISTOF EBERT is the managing director of
Vector Consulting Services. Contact him at christof.
ebert@vector.com.

IEEE Software seeks practical, readable

articles that will appeal to experts and nonexperts

alike. The magazine aims to deliver reliable

information to software developers and managers to

help them stay on top of rapid technology change.

Submissions must be original and no more than 5,400

words, including 200 words for each table and figure.

Author guidelines: www.computer.org/software/author.htm

Further details: software@computer.org

www.computer.org/software

Call for Articles

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

